5y^2-4=35

Simple and best practice solution for 5y^2-4=35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5y^2-4=35 equation:



5y^2-4=35
We move all terms to the left:
5y^2-4-(35)=0
We add all the numbers together, and all the variables
5y^2-39=0
a = 5; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·5·(-39)
Δ = 780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{780}=\sqrt{4*195}=\sqrt{4}*\sqrt{195}=2\sqrt{195}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{195}}{2*5}=\frac{0-2\sqrt{195}}{10} =-\frac{2\sqrt{195}}{10} =-\frac{\sqrt{195}}{5} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{195}}{2*5}=\frac{0+2\sqrt{195}}{10} =\frac{2\sqrt{195}}{10} =\frac{\sqrt{195}}{5} $

See similar equations:

| 3n—5=19 | | 5-8r+8=-7-6r | | 7=3v+4v | | 180=(2x+20)+2x= | | 5x+9=3x+29 | | 6+2h=-3h-2+8 | | -4p-1(1-6p)=0 | | y/4=48 | | t-12/2=(3t/2)-3 | | 3m+15=99 | | 6d/3-d=-2d-1/1 | | 10+x+4-5=-6x-3 | | -8f+7=-6f+5 | | x-7=17+4x | | 7h+40=131 | | 48=y/4 | | 3s-7=2s | | 7y^2-8=26 | | y-41/2=-32/3 | | 3x(x=2)+2x(x-4)=8 | | 1/4a-5=12 | | 4+8t=10t-10 | | (t-12/2)=(3t/2)-3 | | 7(2e−1)-3=6+6e | | 180=(90-x)+x | | y/9=17 | | (1)1/2x=(9)9/20 | | -8=5v-3 | | 4x+3-((15-8x)/2x)=0 | | 6^4x=40 | | 3x-2x-4=5x-4x-8 | | 4+-5x=14 |

Equations solver categories